7. Sınıf Matematik Cebirsel İfadeler Konu Anlatımı

Merhabalar arkadaşlar. Bu yazımızda sizlere 7. Sınıf Matematik dersinin 3. ünitesinde yer alan Cebirsel İfadeler konusunu anlatacağız. Bu yazımızla birlikte aşağıdaki sorulara daha iyi cevap verebileceğinizi umuyoruz.

  • Cebirsel İfade Nedir ?
  • Cebirsel İfadede Matematiksel İşlemler Nasıl Yapılır ? 

CEBİRSEL İFADELER

İçerisinde en az bir bilinmeyen bulunan ve işlem içeren ifadelere “cebirsel
ifadeler” denir.

3x – 2y, 5y², 6 – 4z, u³ – 1 ifadeleri birer cebirsel ifadedir.

Bir cebirsel ifadede (+) veya (-) ile ayrılan her bir ifadeye “terim” denir. Bu ifadelerde herhangi bir bilinmeyene bağlı olmayan sayılara “sabit terim“, bilinmeyenleri ve bu bilinmeyenlerin kuvvetleri aynı olan terimlere
benzer terim” denir. Bilinmeyen ifadelere “değişken“, bu ifadelerin başındaki çarpım durumundaki sayılara ise “katsayı” denir.

 

Örnek; 

  • 7x cebirsel ifadesinde 7x “terim”, x “değişken” veya “bilinmeyen” dir. 7 ise “katsayı”dır.
  • 3y – 4 cebirsel ifadesinde 3y ile – 4 “terim”, y “değişken”, 3 ” katsayı” ve -4 ” sabit terim”dir.
  • 9ab + 3 ifadesinde 9ab ile +3 “terim”, a ile b “değişken”, 9 “katsayı” ve +3 “sabit terim”dir.
  • 14x – 5x cebirsel ifadesinde 14x ile -5x terimlerinin değişkenleri x’tir. Değişkenleri ve değişkenlerinin üstleri aynı olan terimler “benzer terimler”dir.

 

Örnek;

2x + 4y – 3x – 2y +1 cebirsel ifadesindeki benzer terimleri bulalım.

Çözüm;

Değişkeni x olan terimlerden 2x ve -3x benzer terimlerdir. Değişkeni y olan terimlerden ise 4y ve – 2y benzer terimlerdir.

CEBİRSEL İFADELER İLE MATEMATİKSEL İŞLEMLER

Cebirsel İfadeler ile Toplama İşlemi

Cebirsel ifadelerde toplama işlemi yapılırken benzer terimlerin katsayıları toplanır ve bu toplam değişkene katsayı olarak yazılır. Sabit terimlerin toplamı da sabit terim olarak yazılır.

(ax + b) + (cx + d) = (a + c)x +(b + d)
(a, b, c ve d tam sayı)

Örnek;

2x + 3 + x + 2 cebirsel ifadesini en sade şekilde yazalım.

Çözüm; 

I. Yol ; Toplama işlemini modelleyerek yapalım.

II. Yol; Benzer terimlerin katsayılarını ve sabit terimleri toplayarak yapalım. Benzer terimleri kırmızı renk ile yazalım.

2x + 3 + x + 2 = 2x + x + 3 + 2 = 3x + 5 bulunur.

Cebirsel İfadeler ile Çıkarma İşlemi

Cebirsel ifadelerle çıkarma işlemi yaparken önce çıkarma işlemi toplama işlemine dönüştürülür. Sonra toplama işlemi yapılır.

Örnek;

(3x – 2) – (2x – 4) işlemini modelleyerek yapalım.

Çözüm;

(3x – 2) – (2x – 4) = (3x – 2) + (-2x + 4) olur.

I. Yol;

II. Yol;

Benzer terimlerin katsayılarını kendi aralarında ve sabit terimleri kendi aralarında toplama veya çıkarma işlemi yaparak bulalım.

(3x – 2) – (2x – 4) = (3x – 2) + [(-2x) + 4]
= 3x – 2x – 2 + 4
= x + 2 bulunur.

 

Örnek;

3x – 2 ve 2x + 6 cebirsel ifadesini, cebir karoları ile modelleyerek toplayalım.

Çözüm; 

Değişkene ve sabit terimlere karşılık gelen cebir karolarını ayrı ayrı gruplayarak bir araya getirelim:

(3x – 2) + (2x + 6) = 3x – 2 + 2x + 6
= (3x + 2x) + (-2  + 6)
= 5x + 4 olur.

Cebirsel İfadeler ile Çarpma İşlemi

Bir doğal sayı ile cebirsel ifade çarpılırken tam sayılarda olduğu gibi çarpmanın toplama ve çıkarma işlemi üzerine dağılma özelliğinden yararlanılır. Doğal sayı ile cebirsel ifadenin tüm terimleri ayrı ayrı çarpılır.

a.(bx + c) = (a.b)x + (a.c)

Örnek;

Bir kenar uzunluğu (a + 1) br olan karenin çevresini bulalım.

Çözüm;

Bir kenar uzunluğu (a + 1) br olan karenin çevresini,
Çevre = Ç = (a + 1) + (a + 1) + (a + 1) + (a + 1) şeklinde bulabileceğimiz gibi
= Ç = 4. (a + 1) işlemi ile de bulabiliriz.

Bu ifadelerin her ikisini karenin çevresini verdiği için;
4. (a + 1) = (a + 1) + (a + 1) + (a + 1) + (a + 1)  olacaktır.

Eşitliğin sağ tarafındaki cebirsel ifadeleri topladığımızda 4. (a + 1) = 4a + 4 olduğunu görürüz.

Bu eşitlik, tam sayılarda çarpma işleminin toplama işlemi üzerine dağılma özelliğidir.

Örnek;

 olmak üzere aşağıda modellenen işleme ait matematik cümlesini yazalım.

Çözüm;

Modellenen ifade,

2. (2x + 1) = 2. 2x + 2. 1
= 4x + 2 olur.

 

Arkadaşlar Cebirsel İfadeler konumuz burada bitti. 🙂 Beğenilerinizi bekliyoruz.

Bir cevap yazın

E-posta hesabınız yayımlanmayacak.