Birebir Fonksiyon Çözümlü Soruların ve Problemlerin olacağı bu yazımızda Birebir Fonksiyon Nedir?, Birebir Fonksiyon Ne demek? Birebir Fonksiyon Özelliklerine de değineceğiz.
Bire Bir Fonksiyon
Yukarıdaki durum sağlanıyorsa f fonksiyonu bire bir ( 1 – 1 ) fonksiyondur.
Örnek: f : R → R , f ( x ) = x + 2 fonksiyonunun bire bir ve örtenlik durumlarını
inceleyelim.
Cevap:
Örnek: f : R → R , f ( x ) = x 2 + 1 fonksiyonunun bire bir ve örtenlik durumlarını
inceleyelim.
Cevap:
Soru: R de tanımlı, f ve g fonksiyonları için,
f ( x ) = 2 – x ve
( 2g – f ) ( x ) = 5 x – 2
olduğuna göre g ( 2 ) aşağıdakilerden hangisidir?
Cevap: 2.g(x) – f(x) = 5x -2
2.g(x) + x -2 = 5x – 2
2.g(x) = 4x
g(x) = 2x
g(2) = 4 olarak sonucu bulmuş oluruz.
Soru: R de tanımlı, f ve h fonksiyonları için,
f ( x ) = 3 x + 1 ve
h ( x ) = x 2 – 1
olduğuna göre ( foh ) ( –1 ) değeri kaçtır?
Cevap: ( foh ) ( –1 ) = f(h(-1)) buradan h(-1) = -1 üzeri 2 -1 = 0 olur.
= f(0)
=1 olarak sonucu buluruz.
Soru:
Soru: Birikmiş 100 TL parasından her gün 5 TL para harcayan Bülent’in günlere ( x ) göre kalan parasını ( y ) veren y = f ( x ) fonksiyonunu bulup tanım ve görüntü kümelerini belirleyip grafiğini çiziniz.
Cevap: y=f(x) = 100 – 5x olur.
x: gün
x = 0 için y = 100
x = 1 için y = 95
.
.
.
x = 20 için y = 0
f : [0,20] buradan da [0,100] olur
Grafiğini çizecek olursak ta
Soru: Dikildiğinde 20 cm boyunda olan bir fidan her ay 2 cm uzamaktadır. Fidanın aylara ( x ) göre boyunu ( y ) veren y = f ( x ) fonksiyonunu bulup tanım ve görüntü kümelerini belirtip grafiğini çiziniz.
Cevap: Yanıtı aşağıdaki grafik ve açıklamalarda bulabilirsiniz arkadaşlar.
Soru: f ( x ) doğrusal fonksiyonunda f ( 2 ) = 5 ve f ( – 1 ) = – 1 olduğuna göre f ( 5 ) kaçtır?
Cevap: f(2) = 5 ise 2.2 + 1 = 5 şeklinde olabilir
f(-1) = -1 ise 2.(-1) + 1 = -1 olabilir
Yukarıdaki her iki fonksiyonda görüleceği üzere
f(x) fonksiyonumuz 2x + 1 olur. O halde
f(5) = 2.5 + 1 = 11 olur.
Soru: Gerçek sayılarda tanımlı f ve h fonksiyonları için
f ( x ) = – x + 5 ve
( 3h – f ) ( x ) = 10 x – 2
olduğuna göre h ( 3 ) aşağıdakilerden hangisidir?
Cevap: f(x) fonksiyonunda f(3) = -3 + 5 = 2 olur.
(3h-f).(x) = 3.h(x) – f(x) = 10x -2 olur
x=3 için 3.h(3) – f(3) = 10.3 -2
3.h(3) – 2 = 28
3.h(3) = 30
h(3) =10 olarak buluruz.
Soru: Gerçek sayılarda tanımlı f ve h fonksiyonları için
f ( x ) = – x + 5 ve
( 3h – f ) ( x ) = 10 x – 2
olduğuna göre h ( 3 ) aşağıdakilerden hangisidir?
Cevap: f(x) fonksiyonunda f(3) = -3 + 5 = 2 olur.
(3h-f).(x) = 3.h(x) – f(x) = 10x -2 olur
x=3 için 3.h(3) – f(3) = 10.3 -2
3.h(3) – 2 = 28
3.h(3) = 30
h(3) =10 olarak buluruz.
Soru: Yukarıda verilen y = f ( x ) fonksiyonunun grafiğine göre,
a. f ( – 5 ) , f ( – 3 ) , f ( – 2 ) , f ( 1 ) ve f ( 4 ) değerlerini bulunuz.
b. f ( a ) = 0 olmasını sağlayan kaç a ∈ R sayısı vardır?
Cevap: a şıkkı için;
(-5,8), (-2,2), (-3,-1), (1,1), (4,0) f(x) üzerinde olduğu için
f(-5) = 2
f(-2) = 2
f(-3) = -1
f(1) = 1
f(4) = 0 olur.
b şıkkı için ise ;
f(a)= 0 sonucu olan noktaları a ya eşitleyelim.
f(-4) = 0 a=-4
f(m) = 0 a=m
f(4) = 0 a=4
O halde 3 farklı a ∈ R sayısı vardır.