9. Sınıf Matematik Ders Kitabı Cevapları Sayfa 137

9. Sınıf Matematik Ders Kitabı Cevapları MEB Yayınları Sayfa 137 çözümlerini detaylıca yanıtlanmış biçimde bu yazımızda bulabilirsiniz sevgili arkadaşlar.
Soru: Aşağıda verilen denklem sistemlerinin çözüm kümelerini bulunuz.
a) -5x + 3y = 22
2x – 3y = -16
b) 7a – 3b = 10
2a + 5b = -3
c) x/2 + y/3 = -1
2x/3 – y/2 = 10
ç) 1/(x+1) – 2y = -11
x/(x+1) + 4y = 22
Cevap:Tüm şıkları sırasıla aşağıdaki gibi çözümleyelim arkadaşlar.
a) y değerini yok ederek bu durumda x değerinin bulabiliriz.
-5x + 3y = 22
2x – 3y = -16
Bu iki denklemi alt alta toplarsak y değeri yok olacaktır.
-3x = 22-16 = 6
x = -2 olur.
x yerine -2 sayısını yazdığımızda y değerini buluruz.
10 + 3y = 22
3y = 12
y = 4 olur.
b) İki denklemi genişletmemiz gerekecek bu soruda. İlk denklemi 5 ile ikinci denklemi de 3 ile genişletirsek bilinmeyen bir değeri yok etmiş oluruz.
35a – 15b = 50
6a + 15b = -9
İki denklemi toplayalım.
41a = 41
a = 1 buluruz.
İlk denklemde a yerine 1 yazıp b değerini bulalım.
7 – 3b = 10
– 3b = 3
b = -1 olur.
c) Her iki denklemi de tek bir paydada yazarak başlayalım işlemi yapmaya.
(3x + 2y)/6 = -1 yani;
3x + 2y = -6
(4x – 3y)/6 = 10 yani;
4x – 3y = 60
Yeni denklemlerimizi alt alta yazalım ve uygun sayılarla genişletelim. Yeni sayılarımızı toplayıp bilinmeyen değerlerimizi tespit edelim.
3x + 2y = -6
4x – 3y = 60
İlk denklem 3 ile ikinci denklem 2 ile genişletilir.
9x + 6y = -18
8x – 6y = 120
17x = 102
x = 6
Oluşturduğumuz denklemlerin birinde x yerine 6 yazalım ve y değerini bulalım.
18 + 2y = -6
2y = -24
y = -12
ç) İlk denklemimizin sonucu -11 ve ikinci denklemin sonucu 22’dir. İlk denklemi -2 ile çarparsak ikinci denklem ile eşit olur. Sonra da her iki denklemi birbiri ile eşitleriz.
-2 / (x + 1) +4y = x / (x+1) + 4y
Bu iki denklemde 4y değerleri birbirini götürür. x de karşı denklemde bulunan -2 sayısı ile eşittir. Bize soruda verilen denklemlerde x yerine -2 yazalım ve y değerini bulalım.
1 / (-2 + 1) – 2y = -11
-1 -2y = -11
-2y = -10
y = 5 olarak buluruz.
 
Soru: 3x + 4y = 78 denkleminin çözüm kümesinin elemanlarından biri (a-1 , a+1) ise a değerini bulunuz.
Cevap: Denklemin çözüm kümesi elemanları bize soruda verilmiş. x yerine a-1 ve y yerine a+1 yazarak işlemimizi yapalım.
3 (a – 1) + 4 (a + 1) = 78
3a – 3 + 4a + 4 = 78
7a +1 = 78
7a = 77
a = 11 olarak buluruz.
 
Soru: Toplamları en çok 6, farkları en az -2 olan gerçek sayı ikililerini analitik düzlemde gösteriniz.
Cevap: İki sayımızdan biri ” x ” diğeri ise ” y ”olsun arkadaşlar. Verilenleri denklem kurarak çözelim. Toplamları en çok 6 belirtilmiş. x+y = 6 olur. Farkları en az x-y = -2 olur. Taraf tarafa toplama yaparsakta;
x+y= 6
x-y= -2
———–
2x = 4
x= 2 olur. Bulduğumuz değerini yerine yazalım :
2+y = 6
y= 4 olarak buluruz.
 
Soru: -5x + y > 10, x ≤ -2 eşitsizlik sisteminin çözüm kümesini analitik düzlemde gösteriniz.
Cevap: Soruda bize iki tane eşitsizlik sistemi verilmiş. İkinci eşitsizlik sayesinde x’in alabileceği değerleri bulabiliriz.
İlk eşitsizlikte x yerine alabileceği en büyük değeri yazarak başlayalım.
x = -2 için
10+y>10
y>0
Bir sonraki en büyük tam sayıyı yazalım. Böylece eşitsizliği hangi y değeri sağlar bunu öğrenmiş olacağız.
x = -3
15+y>10
y>-5
Bu iki x değeri sayesinde anlarız ki x’in en büyük olduğu noktada y, 0’dan büyük bir sayıdır. x sayısı küçüldükçe y sayısı da küçülecektir. x sayısının sonsuza kadar küçüldüğünü de eşitsizlikte bize bir uç değer vermediğinden anlayabiliriz. Bu demektir ki x sayısı sonsuza kadar küçülüyorsa, bu sayıya karşılık gelen y sayısı da sonsuza kadar küçülür.
Sonuçta, Eşitsizlikte bize verilen x sayısı sonsuzdan gelip -2’de maksimum değeri alır. x sayısına karşılık gelen y değeri de sonsuzdan gelir 0’dan büyük bir değer alır.
 
Soru: |x + y| < 3 eşitsizliğinin çözüm kümesini analitik düzlemde gösteriniz. (a ∈ R+ , | x | < a ise -a < x < a olduğunu hatırlayınız. )
Cevap: Doğruların denklemi yazdığında x+y nin her zaman -3 ten büyük 3 den küçük olduğu görülecektir.
x/3+y/3=1
-x/3+-y/3=1
Birinci denklemde 0,0 noktası sağlar çünkü 3 den küçük oluyor ondan aşağıyı taradım. İkincide 0,0 yine sağladı ondan yukarı taradım.

Bir yanıt yazın

E-posta adresiniz yayınlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir

Insert math as
Block
Inline
Additional settings
Formula color
Text color
#333333
Type math using LaTeX
Preview
\({}\)
Nothing to preview
Insert